
Sequence analysis

Jflow: a workflow management system for

web applications

Jérôme Mariette1,*, Frédéric Escudié1, Philippe Bardou2,

Ibouniyamine Nabihoudine1, Céline Noirot1, Marie-Stéphane Trotard1,

Christine Gaspin1 and Christophe Klopp1,2

1Plate-forme Bio-informatique Genotoul, INRA, UR875 Mathmatiques et Informatique Appliques Toulouse,

Castanet-Tolosan, France and 2Plate-forme SIGENAE, INRA, GenPhyse, Castanet-Tolosan Cedex, France

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on June 30, 2015; revised on October 2, 2015; accepted on October 7, 2015

Abstract

Summary: Biologists produce large data sets and are in demand of rich and simple web portals in

which they can upload and analyze their files. Providing such tools requires to mask the complexity

induced by the needed High Performance Computing (HPC) environment. The connection between

interface and computing infrastructure is usually specific to each portal. With Jflow, we introduce a

Workflow Management System (WMS), composed of jQuery plug-ins which can easily be

embedded in any web application and a Python library providing all requested features to setup,

run and monitor workflows.

Availability and implementation: Jflow is available under the GNU General Public License (GPL) at

http://bioinfo.genotoul.fr/jflow. The package is coming with full documentation, quick start and a

running test portal.

Contact: Jerome.Mariette@toulouse.inra.fr

1 Introduction

Building rich web environments aimed at helping scientists analyze

their data is a common trend in bioinformatics. Specialized web por-

tals such as MG-RAST (Meyer et al., 2008), MetaVir (Roux et al.,

2011) or NG6 (Mariette et al., 2012) provide multiple services and

analysis tools in an integrated manner for specific experiments or

data types. These applications require WMS features to manage and

execute their computational pipelines.

Generic WMS, such as Galaxy (Goecks et al., 2010), Ergatis

(Orvis et al., 2010) or Mobyle (Néron et al., 2009) provide a user

friendly graphical interface easing workflow creation and execution.

Unfortunately, such environments come with their own interface,

complicating their integration within already existing web tools.

Other WMS such as weaver (Bui et al., 2012), Snakemake

(Koster et al., 2012), Ruffus (Goodstadt, 2010) or Cosmos (Gafni

et al., 2014) provide a framework or a domain-specific language to

developers wanting to build and run workflows. These software

packages offer the flexibility and power of a high-level programming

language, but they do not provide a user interface, enable compo-

nent and workflow definition.

JFlow combines a user friendly interface with an intuitive python

API. It is, to our knowledge, the only WMS designed to be

embedded in any web application, thanks to its organization as

jQuery (http://jquery.com/) plug-ins.

2 Methods

Jflow user interface gathers five jQuery plug-ins providing user ori-

ented views.

VC The Author 2015. Published by Oxford University Press. 456
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(3), 2016, 456–458

doi: 10.1093/bioinformatics/btv589

Advance Access Publication Date: 10 October 2015

Applications Note

http://bioinfo.genotoul.fr/jflow
http://jquery.com/
http://www.oxfordjournals.org/

• availablewf lists all runnable workflows accessible to users,
• activewf monitors all started, completed, failed, aborted and re-

seted workflows,
• wfform presents workflow editable parameters in a form,
• wfoutputs displays all outputs produced by the workflow organ-

ized per component,
• wfstatus shows the workflow execution state as a list or an exe-

cution graph. The graph visualization uses the Cytoscape web

JavaScript plug-in (Lopes et al., 2010).

The plug-ins give access to multiple communication methods

and events. They interact with the server side through Jflow’s REST

API, running under a cherrypy (http://www.cherrypy.org/) web ser-

ver. The included server uses the JSONP communication technique

enabling cross-domain requests.

To be available from the different jQuery plug-ins, the work-

flows have to be implemented using the Jflow API. A Jflow com-

ponent is in charge of an execution step. Adding a component to

the system requires to write a Python Component subclass. In

Jflow, different solutions are available to ease component cre-

ation. To wrap a single command line, the developer can give a

position or a flag for each parameter. Jflow also embeds an XML

parser which allows to run genuine Mobyle (Néron et al.,

2009) components. Finally, to allow developers to integrate com-

ponents from other WMS, Jflow provides a skeleton class. This

class only requires to implement the parsing step. A workflow

chains components. It is represented by a directed acyclic graph

(DAG) where nodes represent jobs and edges links between inputs

and outputs. When paths are disjoint, jobs are run in parallel. A

Jflow workflow is built as a Workflow subclass. Components are

added to the workflow as variables and chained linking outputs

and inputs.

To define the parameters presented to the final user, Jflow

gives access to different class methods. Each parameter has at least

a name, a user help text and a data type. For file or directory par-

ameters, it is possible to set required file format, size limitation

and location. Jflow handles server side files with regular expres-

sions, but also URLs and client side files, in which case, it auto-

matically uploads them. Before running the workflow, Jflow

checks data type compliance for each parameter. Job submission,

status checking and error handling, rely on Makeflow (Albrecht

et al., 2012) and weaver (Bui et al., 2012). Therefore Jflow man-

ages error recovery and supports most distributed resource man-

agement systems (Condor, SGE, Work Queue or a single multi

core machine, . . .). Replacing Makeflow by an other job submitter

requires to implement a new Engine subclass. This class creates

and executes the workflow DAG.

3 Example

Jflow user interface has been designed to allow an easy integration

in mash up web applications. Hereunder, we present its integration

in NG6, which provides a user-friendly interface to process, store

and download high-throughput sequencing data. The environment

displays sequencing runs as a table. From this view, the user can add

new data by running workflows in charge of loading the data and

checking its quality. Different workflows are available considering

data type and sequencing technology.

Workflows are listed by the availablewf plug-in built within a

NG6 modal box. A select.availablewf event thrown by the availa-

blewf plug-in is listened and caught to generate the parameter form

using the wfform plug-in. Considering the parameter type, Jflow

adapts its display. For example, a date is shown as a calendar and a

boolean as a check box.

Biologists use NG6 to check sequencing reads quality, including

experimental samples contamination measure. The first input of this

analysis is the contaminant reference genome fasta file, displayed as

a file selector. The second input is a parameter set describing the bio-

logical samples. It includes the read files and metadata such as sam-

ple name, tissue and development stage. To help biologists populate

it, Jflow uses a structured data input rendered by the wfform plug-in

as a spreadsheet. It allows to copy and paste multiple lines. Jflow it-

erates then on the table content to launch each sample processing in

parallel.

To monitor running workflows, NG6 provides a table in a spe-

cific page. The table is filled by the activewf plug-in. In the same

way as described above, the wfstatus is built on a modal box when a

select.activewf event is thrown by the activewf plug-in, as presented

in Figure 1. This view shows the workflow’s execution graph where

nodes represent components and edges links between inputs and

outputs.

NG6 was first implemented using the Ergatis (Orvis et al.,

2010) WMS, which had a separate user interface. With Jflow, all

actions are now available from the same application, which

makes it user friendly.

4 Conclusion

Jflow is a simple and efficient solution to embed WMS features within a

web application. It is, to our knowledge, the only WMS designed with

this purpose. It is already embedded in RNAbrowse (Mariette et al.,

2014) and NG6 (Mariette et al., 2012), where it has been used to process

more than 2000 sequencing runs on a 5000 cores HPC environment.

Conflict of Interest: none declared.

References

Albrecht,M. et al. (2012) Makeflow: a portable abstraction for data intensive

computing on clusters, clouds, and grids. SWEET at ACM SIGMOD, 20.

doi: 10.1145/2443416.2443417.

Fig. 1. Jflow integration: (a) a piece of the NG6 HTML code source in which is

positioned an empty div to build the activewf plug-in and a modal box for the

wfstatus plug-in. (b) The jQuery code in charge to build Jflow plug-ins and

manage user action. When the select.activewf event is thrown from activewf-

div, a function is called with two parameters: event and workflow. The last

parameter stores all the workflow’s information, such as its name and its id,

used in this example to update the modal box title and to build the wfstatus

plug-in. (c) The status of the illumina_qc workflow with the id 26 displayed as

a graph in the NG6 application

Jflow 457

http://www.cherrypy.org/
…
http://bioinformatics.oxfordjournals.org/

Bui,P. (2012) Compiler Toolchain For Data Intensive Scientific Workflows.

Ph.D. Thesis, University of Notre Dame.

Gafni,E. et al. (2014) COSMOS: python library for massively parallel work-

flows. Bioinformatics, 30, 2956–2958.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting ac-

cessible, reproducible, and transparent computational research in the life

sciences, Genome Biol., 11, R86.

Goodstadt,L. (2010) Ruffus: a lightweight Python library for computational

pipelines. Bioinformatics, 26, 2778–2779.

Koster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics, 28, 2520–2522.

Lopes,C.T. et al. (2010) Cytoscape Web: an interactive web-based network

browser, Bioinformatics, 26, 2347–2348.

Mariette,J. et al. (2012) NG6: Integrated next generation sequencing storage

and processing environment. BMC Genomics, 13, 462.

Mariette,J. et al. (2014) RNAbrowse: RNA-seq de novo assembly results

browser. PLoS ONE, 9, e96821.

Meyer,F. et al. (2008) The metagenomics RAST server a public resource for

the automatic phylogenetic and functional analysis of metagenomes, BMC

Bioinformatics, 9, 386.

Néron,B. et al (2009) Mobyle: a new full web bioinformatics framework, 25,

3005–3011.

Orvis,J. et al. (2010) Ergatis: a web interface and scalable software system for

bioinformatics workflows. Bioinformatics, 15, 26.

Roux,S. et al. (2011) Metavir: a web server dedicated to virome analysis,

Bioinformatics, 21, 3074–3075.

458 J.Mariette et al.

http://bioinformatics.oxfordjournals.org/

